Best LACSC 2019 Paper award

June 11 2019

Forecasting Conditional Covariance Matrices in High-dimensional Time Series : a General Dynamic Factor Approach
by Marc Hallin, Luiz K. Hotta, João H. G. Mazzeu, Carlos Trucios, Pedro L. Valls Pereira and Mauricio Zevallos

received the best LACSC 2019 Paper Award at the 4th Latin American Conference for Statistical Computing, held in Guayaquil, Ecuador, May 28-31, 2019.

You can download the paper here.

Abstract: Based on a General Dynamic Factor Model with infinite-dimensional factor space, we develop a new estimation and forecasting procedures for conditional covariance matrices in high-dimensional time series. The performance of our approach is evaluated via Monte Carlo experiments, outperforming many alternative methods. The new procedure is used to construct minimum variance portfolios for a high-dimensional panel of assets. The results are shown to achieve better out-of-sample portfolio performance than alternative existing procedures.

Latest News

Business Club: Le bilan économique après 6 mois de pandémie

2 July 2020

L’Europe économique s’est-elle enfin réveillée, peut on coupler des politiques vertes à un idéal de croissance économique, faut-il craindre un nouveau krach boursier ?

See more details

FNRS.live

1 July 2020

Le « monde d’après » vu par 5 chercheurs FNRS Lors de cette première édition des FNRS.live, les conférences en ligne du FNRS, 5 chercheurs FNRS ont esquissé les opportunités, les défis et les enjeux qui s’offrent à nos sociétés pour envisager l’après crise, sanitaire mais aussi économique et sociale.

See more details

Learning from the Curve

22 June 2020

Students and researchers at ECARES team up to better understand COVID-19 and its economic implications.

Read more
See more news