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Abstract

I merge the standard Principal Agent model with a CAPM-type financial
market, to study the interactions of contracts and financial markets. I prove
existence of equilibrium in this model. I prove a Revelation Principle type of
result to restrict the study of firm design to that of simple sharing rules. I
study economies for which markets have an insurance effect on compensation
contracts. I show sufficient conditions for lower variance to obtain. In this
context I show the effect of markets’ size on efficiency.

1 Introduction

I study workers’ compensation and financial markets in a unified framework.
The size of compensation contracts in US amounts to more than 60% of US

GDP. This makes compensation a relevant determinant of the payoff structure
of assets issued on the market.

It is not clear that compensation packages are independent from the type
of market (if any) on which firms trade their profits. What type of contracts
does a non-listed company offer to its employees? How does it compare to
those observed in Wall Street traded companies? Are the contracts different
in firms controlled by Private Equity groups?

The answers to these questions are relevant for companies, and also for
policy-makers, who write governance and disclosure rules. Many companies in
developing countries are not listed, and an increasing number of companies go
out of the market into private equity control and then back. 1

1For current policy discussion in the field, see for example the Corporate Affairs section of the
OECD website.

1



To study these problems, I integrate two popular models. Principal Agent
Models are the main theoretical tool used to study compensation schemes. Op-
timal incentive contracts are derived, analyzed, and sometimes tested against
available data. Asset pricing models have been developed to study the ef-
ficiency of markets as means to risk sharing, aggregating information, and
inducing Pareto Efficient allocations. Perhaps the most used asset market
model is the Capital Asset Pricing Model, CAPM.

I analyze a Principal-Agent model, with many pairs of principals and
agents, where Principals have access to an asset market after the contract-
ing stage.

• The contracting procedure is the standard one: principals make a take-
it-or-leave-it offers to randomly drawn agents. These offers take the form
of a menu of contracts.

• The asset market is an Arrow-Debreu market where individuals have
mean variance preferences, and a riskless asset is available, a CAPM
economy.

The main idea in my model is that when Principals’ create a menu of
contracts to offer to an Agent, they are also designing securities to trade in the
subsequent asset market. I study here a simple information structure where
information is symmetric at the market stage, and Arrow-Debreu Security
Market Equilibrium can be used as a solution concept for the last stage.

There are two important questions I try to address:

• How does the existence of asset markets affect the solution to the Principal-
Agent problem?

• How does contracting affect the market portfolio and systematic risk?

The answer to the first question is not trivial, and it depends on preferences
and on the distribution of returns of companies. The market provides provide
an insurance or diversification effect to risk averse principals, allowing them
to reach a higher utility and, in some cases, contracts will be influenced. I
show that with symmetric information and independent returns the contracts
offered are always safer.

The answer to the second question is simpler: the asymmetric information
at the contracting stage imposes constraints on the security a principal can
issue on the market. With a take-it-or-leave-it offer structure and complete
information, every agent is pushed to their reservation utility, and principals
trade the remainder. However, when agents’ types are unknown, some In-
centive Compatibility constraint is likely to be binding. This will change the
securities which are issued, and hence the aggregate risk in the economy.
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Section 2 gives an overview of existing literature on the interactions between
contracts and asset markets. Section 3 provides a brief overview of the two
benchmark models. In Section 4 I present a simple example to introduce the
model. In Section 5 I formally characterize the economy in its primitives,
information structures and action spaces. In Section 6 I describe and define
Equilibrium. In Section 7 I provide a revelation principle result to reduce the
dimensionality of the strategy space. In Section 8 I prove existence. Section
9 gives a sufficient condition for the insurance effect of markets to influence
contracts.

2 Related Literature

There is an extensive literature on compensation and asset prices, but only a
few papers look at both in equilibrium.

2.1 Interaction with Asset Prices

Several authors look at asset pricing in a context of delegated investment (For
a survey, see Stracca, 2003). The effects on prices and returns of the classi-
cal informational asymmetries phenomena, moral hazard and adverse selection
are studied in a CAPM setting2, where a representative principal delegates his
investing decisions to an agent. In this literature inefficiencies take the form
of deviations from the non-delegated case equilibrium (asset prices, optimal
portfolio composition and return). The typical framework with a representa-
tive investor, coupled with managers’ abilities and actions having effect only
on portfolios, is powerful but limiting in terms of analyzing the efficiency of
the resulting allocations. An example of the questions typically asked in the
finance literature can be found in Ou-Yang (2005). Taking managers’ assign-
ments as exogenous, but their actions to be unobserved, he tries general and
specific (in terms of utility functions or risk aversion of agents) approaches to
find how returns and prices are affected by moral hazard and finds that the
CAPM β relation between returns still holds. His approach is powerful but
more geared towards the effect of contracting on market prices. I am studying
a situation of Hidden Type, and my results are focused on the effect of markets
on contracts.

2Other authors build their model around APT
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2.2 General Equilibrium Models

A few papers in general equilibrium are related in different ways to the problem
at hand. Rahman (2005a, 2005b), Ellickson, Grodahl, Scotchmer and Zame
(1999,2001,2005), Zame (2005) separately study economies where agents form
team or clubs, which can have different functions such as production or con-
sumption. Market clearing happens through pricing of payoff splitting agree-
ments. These are Walrasian models of competitive contracting, but they do
not include asset markets. Magill and Quinzii (2005) are specifically inter-
ested in management compensation under uncertainty, but the assignment of
managers to firms is given and known at the time of contracting.

3 A Brief Reminder

I will first briefly introduce outlines of the two models I am working with.

3.1 CAPM

The Capital Asset Pricing Model has a long and non-linear history. As a result
the term is used by different people with different connotations. The dominant
use of the term at this day is to identify a class of financial market economies
in which equilibria satisfy certain properties:

• Beta-Pricing Relation In equilibrium the price of any asset is expressed as
a function of mean returns and their covariance with the market portfolio.

• Portfolio Separation In equilibrium every trader holds the same portfolio
of risky securities, and different positions on the riskless asset.

The latter is exploited here because it implies analytical tractability:
In the original incarnation of the model this property naturally followed

by the preferences of agents, by the existence of a riskless asset (and natu-
rally no constraints on short sales), and distributional assumptions on returns.
Through the years a consistent amount of research has been undertaken to
extend the type of economies for which these propreties hold. As my main
interest lies elsewhere I will make these same assumptions for the sake of
tractability.

3.1.1 Primitives

In this economy individuals trade financial assets.
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• There are N individuals, each individual i cares only about the mean
and variance of returns of the portfolio held. Their attitude towards
risk is summarized by the variance aversion parameter a and their utility
function is given by

U(µ, σ2) = µ− a

2
σ2

• There are 1 riskless asset and K risky asset. Because individuals care
about mean and variance and I will allow only for assets fully character-
ized by mean and variance, The only relevant objects are a K-dimensional
vector of returns µ̃ and the K ×K variance-covariance matrix Ω.
In the form

µ =

 µ1
...
µP

 ,Ω =

 σ2
1 . . . ρ1Pσ1σP
...

. . .
...

ρ1Pσ1σP . . . σ2
P


The expression ρijσiσj identifies the covariance between the returns of
asset i and asset j

3.1.2 Equilibrium

After agents trade they will all end up with an identical portfolio of risky
securities and different quantities of the riskless asset. The portfolio of risky
securities held by each agent is going to be one N -th of the aggregate endow-
ment of securities.

If wi is the wealth of agent i he will hold 1
N of the market portfolio and

wi −
PN

j=1

N wj units of riskless asset

3.2 P-A

I will describe a very synthetic model of a firm and highlight the relevant
issues. One individual, the principal p owns a technology, but is not going to
work on it. She will rather hire another individual, the agent a. p does not
know a’s skills, but she has the opportunity to design a menu of contracts and
offer it to the agent for him to pick one.

The technology will produce a positive real number of widgets, and a con-
tract specifies compensation in the form of a linear function of the yield X:
α+ βX.

Suppose the agent could have two types of skills {G,B}, and an agent can
have each skill with probabilities q and 1 − q. The yield of the technology is
a positive random variable distributed according to the agent’s skills XG or
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XB. When p designs a menu, she will write two contracts, one for each type
of agent, and she will have to make sure, that

IR The proposed compensation makes work worthier than staying at home
(Individual Rationality).

IC An agent of type G will pick the contract intended for him over the one
intended for type B, and vice versa (Incentive Compatibility).

.
The Principal-Agent problem in this case boils down to:

max
(αG,βG),(αB ,βB)

qEU (−αG + (1− βG)XG) + (1− q)EU (−αB + (1− βB)XB)

such that EU (αG + βGXG) ≥ u (IR G)
EU (αB + βBXB) ≥ u (IR B)
EU (αG + βGXG) ≥ EU (αB + βBXG) (IC G)
EU (αB + βBXB) ≥ EU (αG + βGXB) (IC B)

Where u is the reservation utility of agents (ie: what they would get if they
“stayed at home”). The first two constraints are the IR constraints, and the
others are the IC constraints.

4 A Simple Example

In this example, I show how markets can affect contracts in a very simple
setting. Markets provide diversification to principals, this diversification op-
portunity makes sure that Principals will insure agents more than in a standard
P-A model.

There are four individuals, with identical preferences over random variables,
U(X) = µX − a

2σ
2
X . Two of them, the Principals own an identical technology,

which will return either 0 or 1. Two of them, the Agents, have the skills to
operate the technology. Their skills are private information at the contracting
stage. Both agents have the same reservation utility of 1

3 .
The skills of agents are identified with the probabilities of returns being 1,

and they are tH = 2
3 for agent H and tL = 1

3 for agent L. The performance of
one agent is stochastically independent from the performance of the other. The
mean returns for an agent is given by µi = ti and the variance is σ2

i = ti(1−ti).
Each principal designs a menu of two linear contracts to offer to the agent

he is going to be randomly matched with. A linear contract is a function of the
form y = α + βx, and is characterized by a pair (α, β) Principals will receive
yp = −α+ (1− β)x, the agent will receive ya = α+ βx.
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4.1 Standard Principal-Agent Model: No Market

The problem of principals is going to be:

max
αH ,βH ,αL,βL

1
2

(
αH + βHtH −

a

2
β2
Hσ

2
H

)
+

1
2

(
αL + βLµL −

a

2
β2
Lσ

2
L

)
subject to IRH , ICH , IRL, ICL

The solution to a standard P-A model with linear contracts is to offer a
menu of these two contracts:

yL =
1
3

yH =
1

162
+

1
2
x

4.2 Principal-Agent with Financial Markets

Now suppose that the Principals can trade their claims on the asset market.
The objective function of principals is now different, because it includes the
outcome of markets. With mean-variance preferences the asset market equi-
librium is determined by a few simple equations, which can be substituted in
the objective function.

The outcome of the CAPM market:

• The market portfolio will be characterized by mean and variance

- µMKT (αH , βH , αL, βL) = αL + αH + βLtL + βHtH

- σ2
MKT (αH , βH , αL, βL) = β2

HtH(1− tH) + β2
LtL(1− tL)

• Equilibrium shares will be

- Market Portfolio:
θH = θL = 1

2

- Riskless asset:
θPi = (−αi + (1− βi)ti − a

2 (1− βH)2σ2
H−

−αH+(1−βH)tH−a
2
(1−βH)2σ2

H−αL+(1−βL)tL−a
2
(1−βL)2σ2

L

2

The Principals’ problem when Markets are available will be:
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max
αH ,βH ,αL,βL

1
2

[(qH −
qH + qL

2
) +

1
2
µMKT (αH , βH , αL, βL)

−a
2

1
4
σ2
MKT (αH , βH , , αL, βL)]

+
1
2

[(qL −
qH + qL

2
) +

1
2
µMKT (αH , βH , αL, βL)

−a
2

1
4
σ2
MKT (αH , βH , αL, βL)]

subject to
IRH , ICH , IRL, ICL

The optimal contracts in this setting will be

yMKT
L =

1
3

yMKT
H =

23
441

+
3
7
x

An important feature exhibited by this example is that optimal contracts
are different when asset markets are present: they are more similar to wages.
In this example the returns are independent, so that the market offers diversi-
fication opportunities, but not insurance. Diversification is however sufficient
for principals to offer safer contracts to agents and achieve a higher expected
utility.

5 Contracts AND Markets

make better My aim here is studying the interactions of contracting inside
the firm with asset trading on financial markets. For this reason I consider a
model where principals are allowed to trade their claim to profits on a market
after contracting has taken place.

5.1 Primitives

There is a finite set of skills T . A population I of Principals and Agents
I = P ∪A, with Mean Variance Preferences over random variables in the form
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E(X) − a
2V ar(X). Agents a ∈ A are endowed with their work skills t ∈ T ,

and a reservation utility ua
A finite set of technologies K, whose distribution of returns depend also on

the skills of the agent operating them. I will consider here binary returns, which
will be uniquely described by the vector of mean payoffs µ and the variance-
covariance matrix Ω. Let t(p) be the type of agent operating in principal’s p
firm.

µ =

 µ1(t(1))
...

µP (t(P ))


Ω =

 σ2
1(t(1)) . . . ρ1P (t(1), t(P ))σ1(t(1))σP (t(P ))

...
. . .

...
ρ1P (t(1), t(P ))σ1(t(1))σP (t(P )) . . . σ2

P (t(P ))


Principals p ∈ P are endowed with one unit of capital necessary to operate

a technology k ∈ K3. Principals can be identified by their technology. There
is also a riskless asset L, returning 1 unit of good in each and every state of
the world.

To identify agents with their relevant characteristics consider a mapping
type : I → T ∪K, determining the type of each individual in the economy, and
its restrictions.

t : A→ T

k : P → K

All technologies in K require exactly one Principal and one Agent to be
operated. A contract is a contingent agreement on how to split returns be-
tween the Principal and Agent forming a firm with technology k. I impose
the restriction that these sharing rules be affine: if X is the random variable
describing the profits of the firm, an admissible rule describing the principal’s
and agent’s share must be of the form:

Xp = −α+ (1− β)X
Xa = α+ βX

In this binary setting, affine sharing rules (more commonly called linear con-
tracts), are exhaustive of all possible linear rules.

3In this model capital is non-homogenous: principals are endowed with a technology and cannot
choose to invest capital in another one.
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I want to look at a case where the type of a principal is public but the
type of an agent is private information. The distribution of skills is common
knowledge. Let F be the σ-field generated by the sets of k and t of principals
and agents of each characteristic k and t P1, ..., P|K|, A1, ..., A|T |. The popula-
tion measure ν defined on (I,F) is common knowledge. This measure gives
the proportion of agents of each type in the population. The distribution of
types is λ(At) = ν|A(At)

ν(a)

5.2 Timeline

I will call the primitives of the game that are common knowledge at every
stage CMN, and they are:

• The vector of means and the variance-covariance matrix of payoffs as a
function of the type of agents working in each firm.

~µ(t(1), ...t(p))
Ω(t(1), ...t(p))

• The technologies K, the technology of each principal (the function k(·)),
the types T , and their distribution across the population ν.

• The variance aversion parameters a and their reservation utility u.

As noted, an Agents’ skills t(·) are private information and the realized
matching is unknown. The economy reaches its equilibrium in 4 stages

1. Principals and agents are matched into pairs randomly and simultane-
ously.
Nature randomly draws a matching τ , the probability of each matching
is equal to 1

P ! .
A matching is a bijection

τ : I → I

i 7→ τ(i)
s.t.

∀p ∈ P, τ(p) ∈ A
∀a ∈ A, τ(a) ∈ P
τ−1(τ(i)) = i

With an abuse of notation I will sometimes use τ(p) for t(τ(p)) to denote
the type of the match.
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2. Each Principal p designs a mechanism, in the form of a generic deter-
ministic mechanism Mp, the action set for mechanism p is Ap. The set
of all mechanisms is calledMp. At this stage every principal only knows
CMN.

3. Each agent a chooses how to play from the mechanism Mτ(a) they face
under the realized match. Each agent observes the menu, and since he
knows the function k(·), he knows the technology of his match k(τ(a)).
A strategy of an agent a is a function of all payoff relevant information
mapping to choice in mechanisms

Ca : Πp∈PMp → Πp∈PAp

Ca : Mp 7→ Ca ∈ Ap

The strategy profile of all agents are CA = {Ca}a∈A which can be written
as a function CA(MP , τ) of all menus offered and of the realized matching

4. Principals now observe types, mechanisms, and how each agent played.
Before uncertainty is realized, they trade their claims to returns on an
asset market, where the riskless asset L is available in zero supply.

This table summarizes, the choices each individual faces at a given time,
and the information available to them.

When Who What Knowing What

0 p ∈ P Mp CMN

1 a ∈ A Ca ∈ Aτ(a) CMN, t(a), τ(a), Cτ(a)

2 p ∈ P θp CMN, τ

Table 1: Timing

5.3 Payoffs

Let T be the set of possible matchings and τ its generic element.
Let θ be the portfolio held by an agent. Let θ = (θR|θL) Where θR is a

P -dimensional vector of positive holdings of the P risky assets, whereas θL is
the position an investor holds in the riskless asset.
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The ex-ante utility from a portfolio θ fixing the matching τ and the con-
tracts CA, is given by

U3
p (θ, CA, τ) = θ · (~µ(τ, CA)|1)− a

2
(
θ′RΩ(τ, CA)θR

)
Demand θ will depend on available assets and their prices (but prices are

also a function of contracts).
Agents payoffs depend on the action chosen (and therefore on the type k

of the principal and on their type t, Ua = U2
a (ca, k, t):

U2
a = U2

a (ca, k, t)

Let F be the probability distribution induced by ν on the set of all possible
matches T . A Principal’s expected utility when mechanisms are (Mp)p∈P ,
actions are are CA and he holds portfolio θ is

U1
p (Mp, CA, θ) =

∫
T
U3
p (θ, CA, τ)dF (τ)

6 Equilibrium

6.1 Description

Because individuals take their decisions at each stage looking at the final pay-
offs, Equilibrium is more easily described starting from the final stage of the
game.

Asset Market At this stage the realized matching is observed. Principals
hold one unit of a security equal to their share of returns in their firm, and
they all have the same information. The solution concept used here is that
of Arrow-Debreu Equilibrium, in which quantity has an analytical expression,
thanks to the assumptions on preferences and the presence of a riskless asset.
The equilibrium portfolio and prices will be based on payoffs CA and on the
matching τ so they will be a function (θ, q)(CA, τ),

Contracting, the agents’ turn Each agent a observes the mechanism
offered to him, Mτ(a), and he knows his own type and the technology of the
principal. This is all the payoff relevant information, so every agent is facing
a choice between lotteries, and he is not playing against other players. They
simply pick an action maximizing U2

a (·). As noted their strategies will be
functions Ca(Mτ(a), k(τ(a)), t(a)).

Contracting, the principals’ turn Each principal offers designs a mech-
anism, without knowing what agent they are going to be matched with. How-
ever they correctly forecast the strategy of each agent, and the outcome of
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asset markets, given menus and contracts. In other words they can forecast
the equilibrium path for all profiles of mechanisms, and the specific outcome
for all possible matchings. Principals at this stage play a game against each
others, before the matching τ is realized. A mixed strategy is a lottery on
possible mechanisms, M̃ ∈ ∆(M).

The flow of decisions is described schematically below, and the information
available at each stage is summarized by the argument of the strategies.

M̃P

τ
→ C̃A(MP , τ))→

Ca

τ
→ [(θ, q)](CA, τ)

Based on this timeline we can write the utility in the first stage in this
form:

Vp(M̃p) = EM̃p×C̃A(·)

[
U1
p (M̃p, C̃A(M̃p, τ̃), τ̃ , θ{C̃A(M̃p, τ̃), τ})

]
Note that τ̃ is a random variable and remember that U1

p defined above
includes an expectation with respect to τ̃ ’s distribution.

6.2 Definition

An Equilibrium consists of

• A trading strategy θ∗ for each Principal p and prices q∗ ∈ R|P | such
that [θ∗, q∗](CA, τ) is an Arrow-Debreu Equilibrium for the symmetric
information asset market taking place after contracting. Each principal
is endowed with one unit of one asset so that the endowment of principal
p is wp = [0, 0, ..., 1, ..., 0, 0] with 1 being in the pth position.

θ∗p(C
∗
A, τ) ∈ arg max

θp∈RP
+

U3
p (θ, C∗A, τ)

s.t.

q∗(C∗A, τ) · θp(C∗A, τ) ≤ q∗(C∗A, τ) · wp∑
p∈P

θ∗p = [1P |0]

• For each agent a a strategy Ca(Mt(a), t, k) such that

C∗a(Mp, τ(a)) ∈ arg max
c∈Mp

U2
a (c, τ(a), t(a))
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• For each principal p,a lottery M̃∗p of deterministic mechanisms such that

supp
[
M̃∗p

]
⊆ arg max

Mp∈Cp
V ∗p (Mp,M

∗
−p)

= U1
p (Mp,M

∗
−p, C

∗
A(Mp,M

∗
−p, τ̃), τ̃ , θ∗{C∗A(Mp,M

∗
−p, τ̃), τ̃})

To prove existence of equilibrium I need the following result, a customized
version of the mechanism design classic.

7 Revelation Principle and the Contract

Space

7.1 MV Contracts

A binary Random Variable assuming values x1, x2, with x2 > x1 with proba-
bilities (π, 1−π) can be rewritten in terms of its mean and standard deviation:

x1 = µ−
√

1− π
π

σ

x2 = µ+
√

π

1− π
σ

Since in this paper, I focus on binary random variables, linear sharing rules
are exhaustive. For natural economic reasons, I am interested only on sharing
rules which are weakly monotone in outcomes. They can be expressed as
(α, β) ∈ R× [0, 1]:

• P’s share is y = −α+ (1− β)x
This is a random variable paying taking the values

{−α+ (1− β)µ−
√

1− π
π

(1− β)σ,−α+ (1− β)µ+
√

π

1− π
(1− β)σ}

• A’s share is y = α+ βx A random variable taking values

{α+ βµ−
√

1− π
π

βσ, α+ βµ+
√

π

1− π
βσ}

In terms of Mean and Variance

• P’s share is distributed with mean and variance (−α+(1−β)µ, (1−β)2σ2)

• A’s share is distributed with mean and variance (α+ βµ, β2σ2)
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7.2 Result

Let an instance of the previously described economy be G, and the set of its
equilibria E(G). Consider now an economy GTwhich is identical in all respects,
but where principals are restricted to offer to agents menus of contracts of
size |T |, instead of designing general game forms. I am going to show that
E(G) = E(GT ). In this way the strategy space of the Principals at the first
stage will be finite dimensional.4 The space of principals’ strategies is now
going to be C|T |p .

Theorem 1. The unrestricted menus economy G and the restricted menu
economy GT , have the same equilibria: E(G) = E(GT )

Proof. Let the contracts from |T | sized menus be identified by yp(t), ya(t), the
shares of principal and agent when the agent picks contract t.
E(G) ⊆ E(GT ) Consider an equilibrium e = (M̃P , CA, β, θ, q) now construct

a strategy profile eT and show it is an equilibrium for GT : Let the menus MT
p

of |T | contracts offered in e(GT ) be made of contracts {y(t)}t∈T :

y(t) = Ca(Mp, t, k(p))

For agents, it is an optimal to choose the contract y(t) with their type t.
Suppose not. Than it would be the case that for some t′

U(y(t′)) > U(y(t))

By construction Ca(Mp, t
′, k(p)) played in Mp yields the same payoff as

y(t′) = c, which contradicts Ca being an equilibrium strategy.
The above described menus M̃T

p are optimal for every principal. Suppose
not, then for some principal p there is a |T | sized menu M̃ ′ such that

V ∗p (M̃ ′|M̃T
−p) > V ∗p (M̃T

P ) = V ∗p (M̃P )

The equality follows by construction, and since p could have offered M̃ ′ in the
unrestricted economy, e could not be an equilibrium, which is a contradiction.
E(GT ) ⊆ E(G)
Consider an equilibrium eT : the players strategies CTa are restrictions on

of optimal equilibrium strategies in the unrestricted game. It is also that M̃T
P ,

are equilibrium strategies also in the unrestricted game. Suppose it was not
the case, then for some p there is an unrestricted mechanisms lottery M̃ such
that

V ∗p (M̃ |M̃T
−p) > V ∗p (M̃T

P )

4In this model, T is finite.
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Note that V ∗p (M̃ |M̃T
−p) can be attained by p by offering a lotteries of re-

stricted menus M̃
′T made of the following contracts y′:

y′(t) = Ca(M, t, k(p))

This implies
V ∗p (M̃ ′|M̃T

−p) > V ∗p (M̃T
P )

which contradicts M̃T
P being an equilibrium for GT

To restrict the space of contracts to a set on which principals’ payoffs will
be continuous in equilibrium, it has to be that all and only the equilibria of
the original unrestricted game are obtained in a game where Principals’ are
allowed to offer only an incentive compatible menu of T contracts. I will call
this economy, GIC .

Corollary 2. The restricted menus economy G and the IC economy GT , have
the same equilibria E(GT ) = E(GIC)

Proof. E(GT ) ⊆ E(GIC) The contracts in the direct revelation menus in the
proof of Theorem 1 are Incentive Compatible by construction.
E(GIC) ⊆ E(GT ) This part of the proof goes as the second part of the proof

in Theorem 1: any outcome that a principal can achieve by menus of size T
can be achieved by incentive compatibles menu of size T .

8 Existence of Equilibrium

8.1 Monotonic Preferences

It is well known that Mean-Variance Preferences are not monotonic. This of
course implies problems for the existence of equilibrium. In a standard CAPM
setting, monotonicity of preferences is solved by imposing a bound on the
variance aversion of every individual. Because I reduced the set of relevant
mechanisms to linear contracts, it is possible to show that, if preferences are
monotonic for given returns, they will be monotonic for any contracts in that
economy.

Definition 1. Let X be a generic Random Variable on the state space S =
(s1, ..., sn) taking values (x1, ..., xn). We say that U(X) is monotonic if ∂U

∂xi
>

0, ∀i.
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Lemma 3. Consider the preferences induced by the utility function

U(X) = E(X)− a

2
V ar(X)

They are monotonic on a set of variables X defined on a finite state space S,
if

a < min
X,s

1
|xs − µX |

Proof. The proof amounts to checking (by differentiating) under which condi-
tions on a the utility function is increasing.

Lemma 4. If preferences are monotonic for all feasible portfolios in an econ-
omy with assets characterized by returns (µ,Ω), then they will be monotonic
for any contracts (αp, βp)p∈P .

Proof. For preferences to be monotonic for all feasible portfolios it has to be
that

a <
1

|max
∑

p∈P θpxp −
∑

p∈P θpµp|

=
1

|max
∑

p∈P θp (xp − µp) |
.

Where the max is taken across portfolios θ such that θp ∈ (0, 1) and outcomes
xp ∈ supp (Xp). Note that∑

p∈P
θp [(−αp + (1− βp)]xp − [−αp + (1− βp)µp)]

=
∑
p∈P

θp ((1− βp)xp − (1− βp)µp)

=
∑
p∈P

θp (1− βp) (xp − µp)

I claim that

max |
∑
p∈P

θp (1− βp) (xp − µp) | < max |
∑
p∈P

θp (xp − µp) |

Note that the solution to the maximization on both sides is going to be
reached at the aggregate market portfolio so that the previous is equivalent to

max |
∑
p∈P

(1− βp) (xp − µp) | < max |
∑
p∈P

(xp − µp) |
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Since it will also be the case that at the maximum all the xp’s chosen will be
greater (or smaller) than the µp’s so that

max
∑
p∈P

(1− βp) | (xp − µp) | < max
∑
p∈P
| (xp − µp) |

Observing that βp ∈ (0, 1) concludes the proof

8.2 The existence result

Theorem 5. If the mean-variance preferences are monotonic for an asset
market economy characterized by the mean vector µ and variance-covariance
matrix Ω then there exists an equilibrium in the CAPM contracting economy.

Proof. I am going to use a well known fixed point result by Glicksberg (1952)
to show that there is an equilibrium in the first stage of the game, given that
the asset market develops as predicted by the CAPM model.

I need to show that

1. The strategy space ∆(MMV ) is a convex, compact subset of a locally
convex Hausdorff space.

2. The best response correspondence of all principals is upper hemi-continuous,
convex valued, and nonempty.

For the first part note that the space of Incentive Compatible menusMMV

is a subset of a Euclidean space. It is closed because it is defined by a finite
number of weak inequalities, and it is bounded because the larger set of feasible
contracts are bounded. Hence it is compact.

The space of lotteries (identified with Borel probability measures) over
these Menus is of course convex. It is also compact with respect to the weak*
topology. This space of probabilities is a subset of the space of continuous
functions C(MMV ), which is locally convex (and Hausdorff) with respect to
the weak* topology.5

For the second part, convexity of the best response correspondence fol-
lows because the returns under two different matchings are independent: if
µ∗(M̃P ), σ∗2(M̃P ) are the mean and variance of returns of the portfolio hold-
ings induced by a menu profile, suppose M̃ and M̃ ′ are both maximizers

µ∗(M̃, M̃−p)−
a

2
σ∗2(M̃, M̃−p)) = µ∗(M̃ ′, M̃−p)−

a

2
σ∗2(M̃ ′, M̃−p))

5For a treatment of these and other results on the weak topologies, and also to see the theorems
of Berge and Glicksberg, see Aliprantis, Border (2005)
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If p plays δM̃p+(1−δ)M̃ ′p, the mean of the outcome will be δµ∗(M̃, M̃−p)+
(1−δ)µ∗(M̃ ′, M̃−p) and the variance δσ∗(M̃, M̃−p)+(1−δ)σ∗(M̃ ′, M̃−p). Prin-
cipal p’s utility will be

δµ∗(M̃, M̃−p)) + (1− δ)µ∗(M̃ ′, M̃−p))−
a

2

[
δσ∗2(M̃, M̃−p)) + (1− δ)σ∗2(M̃ ′, M̃−p))

]
=

δ
[
µ∗(M̃, M̃−p))−

a

2
σ∗2(M̃, M̃−p))

]
+ (1− δ)

[
µ∗(M̃ ′, M̃−p))−

a

2
σ∗2(M̃ ′, M̃−p))

]
=

µ∗(M̃, M̃−p))−
a

2
σ∗2(M̃, M̃−p))

which implies that any convex combination of two maximizers is also a
maximizer, so that the best response correspondence is convex. I will use
Berge’s Maximum theorem show that it is also non empty, compact-valued
and upper hemi-continous.

To apply the maximum theorem to individuals’ best response, it has to be
that constraints vary continuously with other principals’ strategies, and that
the payoff function is continuous in one’s own actions.

First note how the constraints correspondence is constant with respect to
other principals strategies, and is therefore continuous. Also note how the
constraints correspondence maps to the space of Borel probability measures
on menus, which is a Hausdorff space as noted above.

By Lemma 4, if the preferences are monotonic for (µ,Ω), they are going to
be monotonic for the asset markets resulting from all possible contracts CP .
When the CAPM equilibrium exists, the indirect utility from a contract profile
in the CAPM function is continuous. As noted in Nielsen (1990). Nielsen
shows that an equilibrium with some positive prices exists. The utility from
the market qp −

P
p∈P qp
P + 1

|P |

(∑
p∈P µp

)
− ap

2P 2 1’Ω1 could be discontinuous
only when all prices qp are zero, making the denominator in all individual
shares undefined, but this is exactly ruled out.6

Taking expectation with respect to the probability of matches over these
indirect utilities yields a continuous functional on the domain of lotteries on
IC and IR menus.

By the maximum theorem the best response correspondence of each player
is now UHC and compact valued, which implies that the game best response
is as well.

By Glicksberg’s theorem there is a fix point, which is an equilibrium.

6In the literature briefly reviewed by Nielsen (1990), one can find many sufficient conditions
for the existence of CAPM equilibrium, most of them deal with the possibility of satiation of
preferences. Things are particularly simple when returns are bounded (which includes this model):
monotonicity and local non satiation are guaranteed by a low enough risk aversion
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9 The Insurance Effect of Markets

In this section I give sufficient conditions for two-types to exhibit the insurance
effect of the example. I restrict attention at the two-type case.

Lemma 6. Consider an economy where returns are uncorrelated (Ω(τ) is di-
agonal) and principals have the same risk aversion (ap is the same for all
ps) induces a lower risk aversion. If the principals are allowed to trade their
claims, they will act as if their utility function were

Et

[
−αt + (1− βt)µt −

a

2
2N − 1
N2

(1− βt)2 σ2
t

]
Proof. Consider a given matching, the utility obtained by a principal, say is

U(αp, βp) =

αp + βpµp −
a

P
β2
pσ

2
p −

∑
k∈P αk + βkµk

P
+

a

P 2

∑
k∈P

β2
kσ

2
k+

+
∑

k∈P αk + βkµk

P
− a

2P 2

∑
k∈P

β2
kσ

2
k =

αp + βpµp −
a

P
β2
pσ

2
p +

a

2P 2

∑
k∈P

β2
kσ

2
k

So for the point of view of the optimization problem the utility function can
be trimmed down to

−αp + (1− βp)µp −
a

2
2N − 1
N2

(1− βp)2 σ2
p

Taking expectation over possible matchings yields the desired functional form.

Theorem 7. When information is complete and symmetric, the variance of
optimal contracts is decreasing in the size of the markets N for both agents.

∂β∗i (N)
∂N

< 0,∀i

Proof. The principal problem is given by

max
(αt,βt)T

t=1

T∑
t=1

qt

[
−αt + (1− βt)µt −

a

2
2N − 1
N2

(1− βt)2σ2
t

]
s.t. IRt : αt + βtµt −

a

2
β2
t σ

2
t ≥ u
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Substituting the constraints in the objective function we obtain

max
(βt)T

t=1

T∑
t=1

qt

[
βtµt −

a

2
β2
t σ

2
t − u+ (1− βt)µt −

a

2
2N − 1
N2

(1− βt)2σ2
t

]

Differentiating with respect to each βt we obtain

β∗t =
2N − 1

N2 + 2N − 1
,∀t

whose derivative is

∂β∗t
∂N

=
1− 2N

(N2 + 2N − 1)2
< 0, ∀N > 1

which proves the claim

Definition 2. Types ((µ1, σ1) , (µ2, σ2)) satisfy Increasing Differences if

U1(α, β)− U1(α′, β′) > U2(α, β)− U2(α′, β′),∀β > β′

When agents have mean variance preferences with the same risk tolerance
this amounts to

µ1 − µ2 − a
(
σ2

1 − σ2
2

)
≥ 0

Proposition 8. The following cases imply ID:

• Agents have the same mean and different variance

• Agents have different mean and the same variance

• Both agents generate the same outcomes, but the probabilities of success
are different.

The proof amounts to verifying the definition.

Theorem 9. If Increasing Differences is satisfied, the variance of optimal
contracts is decreasing in the size of the markets N for all agents.

∂β∗i (N)
∂N

< 0,∀i

Proof. The maximization problem of the principal is
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max
((α1,β1),(α2,β2))

q

[
−α1 + (1− β1)µ1 −

a

2
2N − 1
N2

(1− β1)2σ2
1

]
+

(1− q)
[
−α2 + (1− β2)µ2 −

a

2
2N − 1
N2

(1− β2)2σ2
2

]
s.t. IR1 : α1 + β1µ1 −

a

2
β2

1σ
2
1 ≥ u

IR2 : α2 + β2µ2 −
a

2
β2

2σ
2
2 ≥ u

IC1 : α1 + β1µ1 −
a

2
β2

1σ
2
1 ≥ α2 + β2µ1 −

a

2
β2

2σ
2
1

IC2 : α2 + β2µ2 −
a

2
β2

2σ
2
2 ≥ α1 + β1µ2 −

a

2
β2

1σ
2
2

Stock : βi ∈ (0, 1)

By Increasing Differences, we can infer by standard arguments7, that IC2

won’t be binding. and IR2 can be substituted by a monotonicity constraint.
β1 ≥ β2. We also know that β1 is going to coincide with the first best solution
(optimal risk sharing), so that it will satisfy the Stock constraint. Always by
Increasing Differences we know that IC1 and IR1 will be binding.

max
((α1,β1),(α2,β2))

q

[
−α1 + (1− β1)µ1 −

a

2
2N − 1
N2

(1− β1)2σ2
1

]
+

(1− q)
[
−α2 + (1− β2)µ2 −

a

2
2N − 1
N2

(1− β2)2σ2
2

]
s.t. IR1 : α1 + β1µ1 −

a

2
β2

1σ
2
1 = u

IC1 : α1 + β1µ1 −
a

2
β2

1σ
2
1 = α2 + β2µ1 −

a

2
β2

2σ
2
1

Stock +Monotonicity : β2 ∈ [0, β1]

First solve the problem for the first two constraints and then check for the
last one to be satisfied.

The first order conditions for the type 1 are the same as in the complete
information problem, yielding

β1 =
qa2N−1

N2 σ2
1

qa
(

2N−1
N2 σ2

t + σ2
t

) =
2N − 1

N2 + 2N − 1

hence we have that β1 is a decreasing function of N .

7See Bolton-Dewatripont (2005), chapter 2
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For type 2

β2 =
q (µ2 − µ1) + (1− q)a2N−1

N2 σ2
2

aq
(
σ2

2 − σ2
1

)
+ (1− q)a

(
2N−1
N2 σ2

2 + σ2
2

)
= −

(1− q)a2N−1
N2 σ2

2 − q (µ2 − µ2)

(1− q)aN2+2N−1
N2 σ2

2 − aq
(
σ2

1 − σ2
2

)
If β1 ≥ β2, this is the solution.
It might be the case that β2 < 0 or β1 < β2 (the third constraint is binding).
As it is usually the case, when β2 < 0, β∗2 will be equal to zero at the opti-

mum and β∗1 is going to coincide with the solution to the complete information
problem.

A little more attention is needed to reach the same conclusion for the case
in which β1 < β2. This implies that IR1 is violated, so we know that it is
going to be binding at the optimum. Consider IR1, IC1, IR2 as a system of
equalities.

IR1 : α1 + β1µ1 −
a

2
β2

1σ
2
1 = u

IR2 : α2 + β2µ2 −
a

2
β2

2σ
2
2 = u

IC1 : α1 + β1µ1 −
a

2
β2

1σ
2
1 = α2 + β2µ1 −

a

2
β2

2σ
2
1

Solving for β2 gives

β2 (µ1 − µ2)− a

2
β2

2

(
σ2

1 − σ2
2

)
= 0

This equation has two solutions:

β2 =

(
0,

2 (µ1 − µ2)
a
(
σ2

1 − σ2
2

))

By ID the non zero solution is at least 2, which is ruled out as β∗2 has to
be smaller than 1. Hence β∗2 = 0 in this case too.

With the whole picture in mind, two things are left to show to conclude
that β∗2 is a decreasing function of N .

1. That the interior solution is decreasing in N

2. That the only possible change as N increases is from an interior solution
to the corner solution and never vice versa.
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To prove claim 1, it is sufficient to differentiate and rearrange the expression
for the interior solution.

∂β2

∂N
=

(1− q) a2N−2N2

N4 σ2
2q
(
σ2

2 − σ2
1

)
+ (1− q) a

(
2N−1
N2 + 1

)
σ2

2−(
aq
(
σ2

2 − σ2
1

)
+ (1− q) a

(
2N−1
N2 σ2

2 + σ2
2

))2 +

−
qta

2N−2N2

N4 σ2
t

[
q (µt − µ1) + (1− q) ta2N−1

N2 σ2
t

](
aq
(
σ2
t − σ2

1

)
+ (1− q) ta

(
2N−1
N2 σ2

t + σ2
t

))2
The sign of the numerator is going to be the opposite of on the sign of the

following expression

q
[
(µ1 − µ2)− a

(
σ2

1 − σ2
2

)]
+ (1− q)aσ2

2

This is always positive when Increasing Differences holds (the term in
square brackets is positive). Hence the interior solution candidate is decreasing
in N.

Now to claim 2. Bearing in mind that β∗1 always coincides with the first
best solution. We need to study the sign of the expression β1 − β2, and show
that as N increases it can go from positive to negative, but not the other way.

β1 − β2 =
2N − 1

N2 + 2N − 1
−

(1− q)a2N−1
N2 σ2

2 − q (µ1 − µ2)

(1− q)aN2+2N−1
N2 σ2

2 − aq
(
σ2

1 − σ2
2

) =

(2N − 1) q
[
(µ1 − µ2)− a

(
σ2

1 − σ2
2

)]
+N2q (µ1 − µ2)

(N2 + 2N − 1)
[
(1− q) a

(
N2+2N−1

N2

)
σ2

2 − aq
(
σ2

1 − σ2
2

)]
We need to consider two cases
µ1 < µ2. ID implies that σ1 < σ2 so that the denominator will always

be positive. The sign is determined by the numerator. The numerator is
a decreasing function of N since the coefficient of N2,(µ1 − µ2) is negative.
Hence the sign can only change from positive to negative.

µ1 ≥ µ2 implies that the second term of the numerator is positive ID implies
that the second term is positive. Hence the sign depends on the denominator.
The sign of the denominator is the sign of the expression

(1− q)a
(

2N − 1
N2

+ 1
)
σ2

2 − aq
(
σ1

1 − σ2
2

)
This is a decreasing function of N . Hence the sign can only change from
positive to negative.

So we have shown that β∗2 will be a non-decreasing function of N
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9.1 Effects on Welfare and Asset Markets

As it is usually the case, asymmetric information entails a loss of efficiency.

Corollary 10. Under the assumptions of Theorem 9, the equilibrium is inef-
ficient compared to the complete information case.

Proof. The non-transferable utility part of the contract, doesnt coincide with
the first best, hence without the IC constraints, Pareto-improving transfers
would be possible.

From the point of view of asset markets this inefficiency takes the form of
a higher market risk.

Corollary 11. In equilibrium every firms issues securities that are (weakly)
riskier than optimal riskier. Hence the aggregate risk is also higher than opti-
mal.

Proof. In the proof of Theorem 9 it was shown that the β∗1 will be the same
as in the first best optimum and β∗2 is always lower. As a result (1− β∗2)2

will be higher. Because the previous statement is true for every principal the
aggregate risk

∑
p∈P

(
1− β∗p

)2
σ2
p will also be higher.

Corollary 12. For any principal-agent pair, there is a number N), such that
any market with N ≥ N traders induces more efficient contracts.

Proof. The claim is trivially satisfied for β∗1 , since it coincides with the first
best optimum. For β∗2 consider ∆2(N) = β∗1(N) − β∗2(N). Since β∗1(N) goes
to zero as N gets large, there must be a N such that β∗1(N) < ∆2(1) for all
N > N . Because ∆2(N) is a positive quantity smaller than β1 ∗ (N) for all N ,
it is also the case that this implies ∆2(N) < ∆2(1), which proves the claim.

Note how this last statement needs to be a limiting statement to take into
account the possibility that β∗2(N) “jumps” to zero at some N and ∆2 would
not necessarily be decreasing at that discontinuity.

10 Conclusion

This paper integrates a model of principal-agent interaction with asset markets.
Principals and Agents are randomly matched. Each pair produces random
returns, whose distribution is known only to the agent at the contracting stage.
Every Principal offers a menu of contracts to the Agent he is matched with,
and the Agents make their pick. What marks the difference from the standard
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contracting model is that Principals have access to an asset market on which
they trade their shares of returns.

I present a general framework and define a notion of equilibrium. I prove
existence a revelation principle result, which I use to prove existence of equilib-
rium. Under standard assumptions of contract theory, I study the interactions
of financial markets on contracts. The existence of markets, induces less risky
compensation for agents. Theorem 9 also implies that as markets get larger
and diversification opportunities multiply, contracts become less and less risky.

Contracting inside firms induces excessive aggregate risk in an economy,
however the size of this inefficiency is reduced by a large enough market. As
noted this is a limiting result and it leaves the open question of the behavior
in small markets.
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