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1. INTRODUCTION

The idea of setting up a market for tradable pollution permits is that
such market can achieve a given pollution target in a cost-e¤ective manner
(Montgomery, 1972). Among other things, whether cost-e¤ectiveness is
achieved, depends on (to?) which extent agents are able to in�uence the
equilibrium permits price (Hahn, 1985) and the optimal price path (Liski
and Montero, 2005a, 2005b and 2006).
The short history of tradable emission permits1 , has shown how market

power in the related output market decreases the e¢ ciency of market-based
policies. The introduction of tradable emission permits has contributed to
the rise of electricity prices in Europe (Sijm, Neuho¤ and Chen, 2006) and
in some states of the United States (Kolstad and Wolak, 2003)2 . In this
sense, the theory has addressed the problem of exclusionary manipulation
(Misiolek and Elder, 1989) and the impact of free allocation of permits in
production e¢ ciency (Eshel, 2005) relying on a dominant-fringe setting,
disregarding the possibility of having more than one strategic agent in
the permits market or in the product market. Two exceptions are Fehr
(1993), which analyzes the possibility of monopolization and the choice
of production technology, and Montero (2002), that compares pollution
control policies in terms of R&D incentives.
In this paper, we contribute to previous literature by considering two

strategic �rms that interact both in the permits (upstream) and in the
output (downstream) market in two successive periods. Our model di¤ers
from the traditional theory on upstream-downstream interaction (Salinger,
1988) in the sense that each �rm�s position in the upstream market is en-
dogenous to the model. Our purpose is to investigate how �rms�interaction
in the permits market is determined by the product market structure and
by the possibility of banking.
We �nd that �rms�interaction in the permits market depends on how

strong is �rms�competition in the output market, which in turn depends
on price elasticity (i.e. consumers�preferences). E¢ ciency in the permits
market also depends on the way �rms compete in the output market. Fur-
ther, we show that, unlike in a dominant-fringe setting, a price-maker�s
market power in the permits market can be overruled by a price-taker that
is strategic in the output market.
Regarding inter-temporal optimization, we can conclude that the pos-

sibility of banking permits reinforces the price-taker�s ability to counter-
balance the price-maker market power in the permits market, but does not

1The �rst example of a tradable emissions permits market was established by the
Clean Air Act Amendment in 1990 to regulate SO2 emissions produced by electricity
generators in the United States.

2Similarly, the emission trading experiments by Muller and Mestelman (1998) and
Godby (2000) show the importance of market power in tradable permits markets.
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ensure that �rms will set permits prices consistently with the e¢ cient price
path.
In Section 2 and 3, we de�ne notation, key assumptions and introduce

our game-theoretical model. In section 4 we show the intra-temporal and
inter-temporal optimality conditions that determine the equilibrium in both
markets. In section 5, we illustrate with a numerical example how the
welfare maximizing free allocation of permits depends on output market
structure. In section 6 we compare our main results with the existing
literature and conclude.

2. ASSUMPTIONS AND NOTATION

Consider two pro�t maximizing �rms (i and j) that produce imper-
fectly substitute goods and compete in prices pi and pj respectively. For
simplicity we assume horizontal di¤erentiation à la Hotelling i.e. each good
is located at one of the extremes of the interval [0,1].
The aggregate demand for each good is respectively given by yi[pi; pj ]

and yj [pi; pj ]; both assumed to be quasi-concave functions of prices.
We assume that goods are produced at a cost ck [yk] ; k = i; j, with

c0k [yk] > 0 and c00k [yk] > 0: The production of these goods generates pol-
luting emissions as a by-product: for a given output level of yk; �rm k
generates polluting emissions equal to �yk with � > 0:
To encourage the reduction of polluting emissions, this industry is sub-

ject to environmental regulation based on tradable emission permits. Ac-
cording to environmental rules, all the polluting emissions of �rm k (given
by �yk) must be covered by an equivalent amount of permits (Ek). Uncov-
ered polluting emissions must be abated, i.e.:

ak = �yk � Ek � 0; k = i; j; (1)

The abatement cost of uncovered emissions is denoted as hk [ak], with
h0k [ak] > 0 and h

00
k [ak] > 0:

The environmental regulator determines the amount of tradable permits
available in each period (S). The regulator also decides how to allocate total
emission permits between �rms: �rm i receives a �ow of free allocation of
�S permits, while �rm j receives (1��)S: In the �rst period, in addition to
the �ow allocation of permits; �rms receive an extra bank of permits, which
they might use for current production/trading or save (bank) for future
utilizations. The total extra bank is equal to R and it is also exogenously
determined by the regulator, as well as its allocation between �rms: �R
for �rm i and (1 � �)R for �rm j. In addition, we assume that S + R is
low enough to constraint �rms�production decisions, that borrowing is not
allowed (i.e. banking cannot be negative) and that agents�stock of permits
are publicly observed.
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With respect to permits trading, di¤erently from the traditional lit-
erature regarding upstream-downstream interaction (Salinger, (1988)), we
let �rm�s position in the upstream market to be endogenous. We consider
that �rm j has a competitive advantage in the permits market. We model
such advantage by considering that �rm j sets the price of permits q in the
permits market.
At period t = 1 (banking period), �rms receive an exogenous amount

of permits (bank R and �ow S allocation) and, conditional on their expec-
tations about subsequent interactions, �rms play a three stage game with
the following time structure: in the �rst stage, �rm i chooses the price of
permits qt and the bank of permits for period t+ 1 i.e. Bj;t+1; in the sec-
ond stage, �rm i observes qt and decides how many of his current polluting
emissions to cover with permits Ei;t and how many permits to save for
future utilizations Bi;t+1, while �rm j clears the permits market, i.e. he
ensures that xj;t = �xi;t: Then, given after-trade permits holdings, �rms
simultaneously set output prices pi;t and pj;t respectively. The reason for
considering the previous timing is twofold. First, pollution permit markets
are in general less liquid than other commodity or �nancial markets and
therefore we assume that decisions in such markets are harder to reverse
than decisions in the output market3 . Thus, interaction in the permits
market must precede strategic interaction in the output market. Second,
sequentiality is required to be able to �nd the price that clears the permits
market. This is the case since each agent�s position in the permits market
as a demander or supplier of permits is decided endogenously depending on
the di¤erence between the amount of permits that were allocated to them
and their optimal use of permits for production.
At period t = 2 (end of compliance period), �rms play again the three

stage game just described but now initial permits endowments are no longer
exogenous: aside to the exogenous �ow allocations they will receive from
the regulator (�S and (1��)S respectively), �rms are able to decide their
initial permits holdings at t = 2 through the saving decisions they took
at t = 1: Moreover, unlike t = 1; �rms will not save permits for future
utilizations given that t = 2 represents the end of the compliance period.
In the following section, we describe the two-period dynamic model and,
afterwards, we analyze the characteristics of the subgame perfect Nash
equilibrium (SPNE) of the game.

3. THE MODEL
3Own statistics based on EPA�s database at http://camddataandmaps.epa.gov/gdm/

show that the number of private transactions per year in the US-SO2 permits market
range from 236 in 1994 to 4950 in 2005. Thus, even in the best case scenario, transactions
are less than 15 per day.
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At each period t = 1; 2, conditional on initial permits endowments,
�rms i and j play the following three stage game. In the �rst stage, �rm i
chooses the price of permits (qt) and the bank of permits to save for period
t + 1 (Bj;t+1), with Bj;3 = 0 (since compliance period ends at t = 2).
More precisely, at the �rst stage of period t; �rm j solves the following
optimization problem:

max
fqt;Bj;t+1g

8><>:
pj;tyj;t[pi;t; pj;t]� cj;t[yj;t[pi;t; pj;t]] + qtxj;t � hj;t [aj;t] +

+
2X
t=1

�j;t+1
(1+r)t

9>=>;
(2)

subject to

Ej;t + aj;t = �yj;t (3)

Bj;t+1 = (1� �)S + (1� �)R+Bj;t � Ej;t � xj;t (4)

Bi;t+1 = �R+ �S +Bi;t � Ei;t � xi;t (5)

xj;t = �xi;t (6)


j;t = f
j;t+1; pi;t[Ei;t; Ej;t]; pj;t[Ei;t; Ej;t]; Ei;t[qt]g (7)

with R = 0 if t = 2 and where: (i) �xi;t = xj;t corresponds to the amount
of permits sold (or bought, when xj;t < 0) by �rm j; (ii) aj;t is the amount
of polluting emissions abated by �rm j and; (iii) 
j;t represents �rm j0s
information set that includes the rational expectations formulated by this
�rm with respect to interactions in the subsequent stages.
In the second stage of the game played at each period t; �rm i decides

how many of its current polluting emissions to cover with permits (Ei;t) and
how many permits to save for future utilizations (Bi;t+1); with Bi;3 = 0.
The optimization problem is:

max
fEi;t;Bi;t+1g

8><>:
pi;tyi;t[pi;t; pj;t]� ci;t[yi;t[pi;t; pj;t]] + qtxi;t � hi;t [ai;t] +

+
2X
t=1

�i;t+1
(1+r)t

9>=>;
(8)

subject to

Ei;t + ai;t = �yi;t (9)

Bi;t+1 = �S + �R+Bi;t � Ei;t � xi;t (10)


i;t = f
i;t+1; pi;t+1[Ei;t+1]; pj;t+1[Ei;t+1]g (11)

Finally, at the third stage of the game, �rm i and j interact in the
output market simultaneously choosing their output prices. At this stage,
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�rm i and j; solve the following optimization problems, For �rm i is

max
fpi;tg

fpi;tyi;t [pi;t; pj;t]� ci;t [yi;t [pi;t; pj;t]] + qtxi;t � hi;t [ai;t]g (12)

subject to

�yi;t = Ei;t + ai;t (13)

Bi;t+1 = �S + �R+Bi;t � Ei;t � xi;t (14)


i;t = f
i;t+1g (15)

and for �rm j is

max
fpj;tg

fpj;tyj;t [pi;t; pj;t]� cj;t [yj;t [pi;t; pj;t]] + qtxj;t � hj;t [aj;t]g (16)

subject to

�yj;t = Ej;t + aj;t (17)

Bj;t+1 = (1� �)S + (1� �)R+Bj;t � Ej;t � xj;t (18)

Bi;t+1 = �S + �R+Bi;t � Ei;t � xi;t (19)

xj;t = �xi;t (20)


j;t = f
j;t+1g (21)

In the following section, we characterize the SPNE of the game and
describe the intra and inter-temporal optimality conditions, which will be
used to analyze the role of banking permits under upstream-dowstream
strategic interaction.

4. EQUILIBRIUM BEHAVIOR

We use backward induction techniques to characterize �rms�behavior
at equilibrium. First we analyze strategic interaction in the output market
and then we focus on strategic interaction in the permits�market, under-
lining the results concerning the equilibrium path of permits� price and
comparing it with a perfectly competitive price path. Note that we fo-
cus on interior solutions where pro�ts are a quasi-concave function of Ek;t.
This is always the case when we consider: (i) imperfect substitute goods
à la Hotelling; (ii) quadratic costs of production. These restrictions on
the parameters of the model ensures the reasonable economic properties:
p�k;t � 0; E�k;t � 0 and a�k;t � 0 (or equivalently, �y�k;t � E�k;t � 0); for
k = i; j:

4.1. Strategic interaction in the output market

The strategic interaction in the output market is of a static nature.
Nevertheless, is important to stress that equilibrium output prices will di¤er
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across periods due to �rms�banking decisions. In fact, �rms�savings for
period t+1 will a¤ect �rms�permit holdings at period t; and consequently
a¤ect the output equilibrium prices.

The equilibrium output prices
�
p�k;t � 0; k = i; j

�
and the correspond-

ing equilibrium output levels (which determine abatement needs a�k;t � 0;
k = i; j) are determined by the solution to problems (12) and (16). The
next lemma shows these optimal output price strategies:

Lemma 1. For given "after-trade" permits holdings (Ei;t; Ej;t), optimal
price behavior in the output market requires perfect balance between �rms�
marginal revenue and �rms�marginal cost of changing output prices, i.e.,
the optimal output prices

�
p�i;t [Ei;t] ; p

�
j;t [Ei;t]

�
correspond to the solution

of the following system:8<:
pi;t +

yi;t
@yi;t
@pi;t

= c0i;t [yi;t] + �h
0
i;t [�yi;t � Ei;t]

pj;t +
yj;t
@yj;t
@pj;t

= c0j;t [yj;t] + �h
0
j;t [�yj;t � Ej;t]

(22)

Given optimal price strategies
�
p�i;t [Ei;t] ; p

�
j;t [Ei;t]

�
; equilibrium output lev-

els are given by�
y�i;t

�
p�i;t [Ei;t] ; p

�
j;t [Ei;t]

�
; y�j;t

��
p�i;t [Ei;t] ; p

�
j;t [Ei;t]

���
and, for given Ei;t; the equilibrium abatement choices are then determined
as

a�i;t [Ei;t] = �y�i;t
�
p�i;t [Ei;t]

�
� Ei;t

a�j;t [Ei;t] = �y�j;t
�
p�i;t [Ei;t]

�
� S + Ei;t

Proof. Firms�pro�ts are quasi-concave functions of output prices: out-
put demands are assumed to be quasi-concave, production and abatement
costs are convex functions of prices and permits revenues are linear func-
tions. Quasi-concavity of �rms� pro�t functions is a su¢ cient condition
for the existence of output prices equilibrium that maximize pro�ts. Such
prices are the ones that satisfy Kuhn-Tucker conditions for problems (12)
and (16) when the non-negativity constraint on prices is not binding (i.e.
p�k;t > 0, k = i; j) so that we reach interior solutions. Then, the Kuhn-
Tucker conditions to reach interior solutions for equilibrium prices can be
reduced to the system in (22).

Firms�optimal output prices are set at the margin. Equation (22) can
be reformulated as �

Li;t =
1

"yi;t;pi;t

Lj;t =
1

"yj;t;pj;t
(23)
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where "yk;t;pk;t is the own-price elasticity of demand4 for good k = i; j and
Lk;t is the augmented Lerner index in the sense that now it includes the

e¤ect of marginal abatement costs (with Lk;t =
pk;t�c0k;t��

h0k;t
pk;t

pk;t
).

We observe that the �rm with the less e¢ cient abatement technology
will be less competitive in the output market and, all the rest being equal,
will set a higher output price to compensate its higher cost of environmental
compliance. From equation (23) we can draw the following conclusion:

Proposition 1. Strategic �rms are able to pass-through the cost of en-
vironmental regulation to consumers and will get windfall pro�ts by increas-
ing their mark-ups.

When strategic interaction in the output market is relevant, �rms will
take into account the e¤ect on the output market of their decisions in
the permits market (i.e. @pk;t

@Ek;t
;
@p�k;t
@Ek;t

) and, consequently, di¤erently from
what is established in the literature (both under perfectly competitive and
dominant-fringe setting), �rm i will no longer be passive. This is the case
since i will acknowledge the in�uence he exerts on his rival�s payo¤ trough
changes in his permits demand (Ei;t).
Accordingly, when �rms exert some degree of market power in the out-

put market, any analysis of market power in the permits market that ne-
glects the technological link with the output market is misleading because
it does not account for the whole motivation behind �rms decisions.

4.2. Strategic interaction in the permits market

According to our time structure, at period t = 1, �rm face a static
decision, in relation to the amount of emissions to be covered with permits
(or the price of permits respectively) and a dynamic decision in relation to
the amount of permits to save. For this reason, �rms�initial endowment
of permits at period t = 2 are endogenously determined by �rms�saving
decisions in period 1; and, consequently, �rms�dynamic decisions at period
1 will in�uence market outcomes at period 2. Instead, since it must be the
case that Bi;3 = 0, at period t = 2 �rms take only static decisions.

4.2.1. End of the compliance period

At t = 2; �rms� interaction in the permits market is modeled in the
context of a sequential two-stage game. In the second stage, �rm i ob-
serves the price of permits and decides the amount of emissions (Ei;2) to
be covered by permits (which residually determines its demand/supply of

4This means that "yi;t;pi;t = � @yi;t
@pi;t

pi;t
yi;t

> 0 and, since goods are assumed to be

Hotelling substitutes, it is also the case that "yi;t;pj;t =
@yi;t
@pj;t

pj;t
yi;t

> 0:
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permits). Since it must be the case that B�i;3 = 0; the problem faced by
�rm i in period t = 2 is of a static nature. Considering again that the
domain of values of the parameters is restricted to the one that entails an
interior solution, �rm i�s choices in the permits market will be optimal if
and only if the condition in the following lemma holds.

Lemma 2. Given permits price (q2), �rm i chooses E�i;2[q2] such that
the following condition holds:

h0i;2 [ai;2] = q2 �
�
@pi;2
@Ei;2

yi;2 +
dyi;2
dEi;2

�i;2

�
(24)

where �i;2 = pi;2 � c0i;2[yi;2]� �h0i;2[yi;2] is the total mark-up in the output
market. When condition (24) holds, and given B�i;3 = 0; the conditional
demand/supply of permits is then determined by

x�i;2[q2] = �S +Bi;2 � E�i;2[q2]; (25)

where E�i;2[q2] is implicitly given by (24).

Proof. We restrict our analysis to parameters for which �rm i0s pro�t
function is a quasi-concave functions of Ei;2 to ensure the existence of a
maximum. Such maximum satis�es Kuhn-Tucker conditions for problem
(8) when the condition on the non-negativity of emissions is not binding (i.e.
E�i;2 > 0) so that we reach an interior solution. Then, the Kuhn-Tucker
conditions to reach an interior solution for emissions can be reduced to
(24).

Lemma 2 shows that �rm i0s choice concerning emissions trading are
optimal if and only if the gain from buying an additional emission permit
(corresponding to the reduction in marginal abatement cost, h0i;2 [ai;2]) is
perfectly o¤set by the net marginal cost of buying such permit. This cost
includes the direct cost of buying permits (the price of permits, q2) and an
indirect cost, which steams from the technological link between permits and
output market. Indeed, equation (24) shows that, even if �rm i behaves
as a price-taker in the permits�market, as long as he is strategic in the
output market, when considering whether to buy an additional permit,
he anticipates the e¤ect in pi;2 due to the lower abatement e¤ort he will
undertake when buying permits, and the e¤ect on the demand for good
i due to the change both in pi;2 and pj;2. These e¤ects are respectively the
�rst and second term of the following expression:

@pi;2
@Ei;2

yi;2 +
dyi;2
dEi;2

�i;2: (26)

The sign of (26) is positive if i0s output price decreases when he increases

his use of permits for production
�
@pi;2
@Ei;2

< 0
�
and negative otherwise (the
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proof is provided in Appendix B). The sign of this last derivative ultimately
depends on which �rm owns the most e¢ cient abatement technology and
on the e¢ ciency gap between one �rm and the other (the proof is provided
in Appendix A).
Previous literature based on a dominant-fringe setting found that price-

takers optimize when q = h0i [ai] and static ine¢ ciency is due to the gap
between the dominant �rm�s marginal abatement cost and the price of
permits q.
Let us now suppose that �rm i (the price taking �rm in the market for

permits) is in fact on the demand side. In such case, demand for permits is
given by (25) so that (24) is satis�ed. If i is the owner of the less e¢ cient

abatement technology
�
i.e. @pi;2

@Ei;2
< 0

�
, permits demand is higher with re-

spect to the dominant-fringe setting, increasing permits price ine¢ ciency.
If instead he is the owner of the most e¢ cient abatement technology and the
relative e¢ ciency of such technology is very high, so that (26) is negative,
demand is lower than in the dominant-fringe setting, decreasing permits
price ine¢ ciency. Finally, if i is on the supply side, the sign of the e¤ect
in (26) stills depend on who owns the most e¢ cient abatement technology
but it would be the supply curve the one moving upwards or downwards
as just described. The following proposition summarizes this result:

Proposition 2. A price-taker is able to counterbalance the market
power of a price-maker in the permits market through his actions in the
output market. Whether his demand (or supply) is higher or lower than
in a dominant-fringe setting depends on wether an increase in the use of
permits for production increases his own output price (or vice versa). This
e¤ect on output price is in�uenced by the relative e¢ ciency of his abatement
technology.

The key for the price-taker abatement choices is the e¤ect that the
use of permits has on output pro�ts and not on which side of the permits
market he is. Optimal use of permits E�i;2[q2]; and therefore h

�
i;2

�
a�i;2
�
; is

such that:

h0i;2
�
a�i;2
�
< q2 if

@pk;2
@Ek;2

< 0 (27)

h0i;2
�
a�i;2
�
> q2 if

@pk;2
@Ek;2

> 0 (28)

Since Ei;2 is a function of q2 which is set by �rm j we derive the following
lemma.
In stage 1; when �rm j decides the optimal price of permits (q2), he

anticipates that the conditional demand/supply of permits is given by (25)
and, despite the static nature of the problem (Bj;3 = 0), the optimal value
of q2 will be in�uenced by �rm �{0s past savings (Bi;2) as follows:
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Lemma 3. At t = 2; the equilibrium price of permits is given by

q2 �
xi;2[q2]
@Ei;2[q2]
@q2

= h0j;2 [aj;2]�
�
@pj;2
@Ei;2

yj;2 +
dyj;2
dEi;2

�j;2

�
(29)

Proof. Given our assumption regarding quasi-concavity of pro�ts, the
equilibrium value q�2 is given by the FOCs of problem (2), with 
j in-
cluding the information in system (22) and condition (24), i.e. 
i =�
p�i2
�
E�i;2[q2]

�
; p�j;2

�
E�i;2[q2]

�
;E�i;2[q2]

	
:

Lemma 3 shows that, in equilibrium, �rm j chooses the price of per-
mits for which the marginal revenue from price changes is exactly o¤set by
the marginal cost generated by such changes, balancing the marginal prof-
itability of permits price changes in the output and in the permits market.
Notice that the marginal revenue in (29) is the standard monopolist�s

marginal revenue that we note M�
2 =

�
q�2 �

xi;2[q2]
@Ei;2[q2]

@q2

�
: The RHS of the

intra-temporal condition depends on the choice that his rival i made in the
previous period (in (25)). This result restated in the following proposition,
as we will show, may drastically change market outcomes.

Proposition 3. A price-taker in the permits market can in�uence the
price of permits at t = 2 trough his saving decisions in t = 1.

The LHS of (29) represents the marginal cost of price changes, that
can be explained as the sum of a direct and an indirect e¤ect. The direct
marginal cost corresponds to the marginal cost of abatement h0j;2 [aj;2]:
changes in permits prices, a¤ect permits trading and, therefore, �rm j0s
choices in terms of abatement. The indirect cost is given by the last term
in the RHS of (29) and it captures the e¤ect of permits�price on output�s
price (and quantity) trough emissions trading: a change in the price of
permits q2 impacts on the optimal use of permits by i, changing "after-
trade" permits holdings and, subsequently, a¤ecting output prices. The
discussion after lemma 2 regarding the sign of (26) also applies to the last
term in the RHS of (29) since:

�
�
@pj;2
@Ej;2

yj;2 +
dyj;2
dEj;2

�j;2

�
=

�
@pj;2
@Ei;2

yj;2 +
dyj;2
dEi;2

�j;2

�
(30)

Condition (30) implies that, if (26) is positive and �rm j is the seller
of permits, supply of permits is higher than supply in a dominant-fringe
setting. Moreover, when (26) is positive, it is also the case that the demand
for permits is higher than the demand faced by the dominant �rm in a
dominant-fringe setting. Instead, if (26) is negative, these two curves move
in opposite directions as well as if j is the buyer and i is the seller. In this
last case, permits price e¢ ciency may be higher when there is more than
one strategic agent, interplaying in the permits and in the output market,
than when there is only one strategic �rm and many competitive ones.
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Proposition 4. Firms� competition in the output market in�uences
the price-maker�s permits price choice. Whether the resulting permits price
is the perfect competition one or a price even higher than the one resulting
from a dominant-fringe interaction depends on the way both �rms interact
in the output market taking into account each �rm�s relative abatement
technology.

Given that both demand and supply in our framework are di¤erent from
the ones in a dominant-fringe setting or in a perfectly competitive setting,
we �nd:

h0j;2
�
a�j;2

�
< M�

2 if
@pk;2
@Ek;2

< 0; (31)

h0j;2
�
a�j;2

�
> M�

2 if
@pk;2
@Ek;2

> 0 : (32)

Propositions 2 to 4 may be summrized as follows: when j is the owner
of the most e¢ cient abatement technology, i.e. @pk;2

@Ek;2
< 0, it is the case

that
h0j;2

�
a�j;2

�
< h0i;2

�
a�i;2
�
< q�2

if either j is the seller of permits, or;
��� @pj;2@Ei;2

yj;2 +
dyj;2
dEi;2

�j;2

��� > ����� xi;2[q2]
@Ei;2[q2]

@q2

����
when j is the buyer. Similarly, it is the case that

q�2 > h
0
i;2

�
a�i;2
�
> h0j;2

�
a�j;2

�
if either j is the buyer of permits, or;

��� @pj;2@Ei;2
yj;2 +

dyj;2
dEi;2

�j;2

��� > ����� xi;2[q2]
@Ei;2[q2]

@q2

����
if j is the seller.
Signs reverse when j is not the owner of the most e¢ cient technology,

i.e. @pk;2
@Ek;2

> 0:

4.2.2. Banking period

At period t = 1 strategic interaction in the permits market is again
modelled in the context of a two-stage game. As before, in the second stage,
�rm i observes the contemporaneous price of permits (q1) and decides the
amount of emissions to be cover with permits (Ei;1): But now, di¤erently
from the end of the compliance period, given expectations on the path of
permits�price, �rm i also decides how many permits he wants to save for
next period (Bi;2). These decisions will be optimal if and only if conditions
in the following proposition are satis�ed.

Lemma 4. Given permits price (q1) and �rm i0s expectations on future
interactions, �rm i chooses optimally the amount of polluting emissions to
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cover with permits (Ei;1) and the amount of permits to save for future use
(Bi;2) if and only if the following conditions hold:

h0i;1 [ai;1] = q1 �
�
dyi;1
dEi;1

�i;1 +
@pi;1
@Ei;1

yi;1

�
(33)

q1 =
1

1 + r

�
q2 + xi;2

@q2
@Bi;2

�
(34)

When conditions (33) and (34) hold, the conditional demand/supply of
permits is

x�i;1[q1] = �S + �R�B�i;2 � E�i;1[q1] (35)

where E�i;1[q1] is implicitly given by (33) and the optimal saving rule B
�
i2

conditional on current prices and expectations on future interactions is im-
plicitly given by (34).

Proof. Given quasi-concavity of pro�t functions, the equilibrium values
E�i:1[q1] and B

�
i;1 are given by the FOCs of problem (8), with 
i including

the information in system (22) and subsequent interactions at t = 2, i.e.

i;1 =

�
p�i;1 [Ei;1; Ej;1] ; p

�
j2 [Ei;1; Ej;1] ;
2

	
:

Lemma 4 de�nes the intra and the inter-temporal optimality conditions
for �rm i: First, concerning the use of permits (Ei;1), condition (33) is
analogous to condition (24) in lemma 2. This is the case because, given
the saving decisions, the abatement decisions are, indeed, of a static na-
ture (intra-temporal optimality). Second, condition (34) states the inter-
temporal optimality condition for �rm i during the banking period. Such
condition requires that, in equilibrium, it is not pro�table to reallocate
permits intertemporally, and consequently, abatement e¤ort across peri-
ods. In the case of �rm i; the inter-temporal optimization is guaranteed
when saving the amount of permits that makes equal the current cost of
permits (either the direct cost from buying or the opportunity cost of not
selling) and the (discounted) expected future pro�ts due to the additional

stock of permits
�
d�i;2
dBi;2

�
:

In a dominant-fringe setting, optimal fringe�s savings equalize current
opportunity cost of saving permits (q1) and the discounted expect pro�ts
of saving permits: �

B�i;2
�competitive

: q1 =
q2
1 + r

:

Instead, when the price-taker in the permits market is strategic in the
output market, the discounted expected pro�ts of saving permits is not
limited to the direct e¤ect given by q2: As a matter of fact, in the presence of
banking under upstream-downstream strategic interaction, the discounted
pro�ts of saving permits include: (i) the direct e¤ect of savings (�rm i will
not need to spend q2 to buy the permit that saved today xi;2); and (ii)
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the indirect e¤ect of savings on future permits�prices (since as shown in
proposition 4, Bi;2 in�uences �rm j0s decision with respect to q2). Let us
restate (34) as follows:

q1 =
1

1 + r
(q2 +H) (36)

As a reaction to q1 �xed by j, if �rm i is the buyer next period (xi;2 =
�S + Bi;2 � Ei;2 < 0), Bi;2 is such that the previous equality is satis�ed
with H > 0: Then, given that Bi;2 > 0 (no borrowing possible), when Bi;2
tends to �S � Ei;2 the inter-temporal relationship between prices is

lim
Bi;2!�S�Ei;2

H = 0) q1 =
q2
1 + r

(37)

Instead, when Bi;2 ! 0 the relationship satis�es

lim
Bi;2!0

H =
@q2
@Bi2

(�S � Ei;2)) q1 >>
q2
1 + r

(38)

If �rm i is the seller next period the relationship is inverse.
To our knowledge, this e¤ect has not been considered in previous litera-

ture based on a competitive or dominant-fringe setting (Liski and Montero,
2005a). In these two settings, the price path of permits is the competitive
one as long as the price-takers in the permits market hold positive stocks.

Proposition 5. During the banking period, the price-taker�s inter- tem-
poral optimality condition is not the competitive one and, for that reason,
the price-maker in the permits market cannot manipulate the price path
alone.

In the rest of this subsection, we solve the �rst stage of the game and
characterize the equilibrium behavior of �rm j: That is, at the �rst stage
of the game played at t = 1; �rm j decides on the permits price (q1) and
the amount of permits he is willing to save for future use (Bj;2). The next
proposition points out the conditions that must be satis�ed for j0s behavior
to be optimal at t = 1.

Lemma 5. In equilibrium, the price of permits at t = 1 is implicitly
given by

dpj;1
dq1

yj;1 +
dyj;1
dq1

�j;1 � xi;1[q1; Bj;2]�
dxi;1
dq1

�
q1 � h0j;1

�
(39)

=
1

1 + r

�
@Bi;2
@q1

�
q2 � h0j;2

��
where xi;1 includes �R.
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Analogously, �rm j0s optimal bank of permits (Bj;2) is implicitly given
by the following optimal saving rule:

dpj;1
dBj;2

yj;1 +
dyj;1
dBj;2

�j;1 +
�
q1 � h0j;1

�
C � h0j;1 (40)

= �
�
dpj;2
dBj;2

yj;2 +
dyj;2
dBj;2

�j;2 �
dq2
dBj;2

xi;2 +
�
q2 � h0j;2

�
C � h0j;2

�
where C = @Bi;2

@Bj;2
+

dEi;1
dBj;2

.
The optimal amount of polluting emissions to be covered by permits is

then determined by the following transition law:

E�j;1 = (1� �)S + (1� �)R�B�j;2 � x�j;1: (41)

where B�j;2 is determined by (40) and x
�
j;1 is equal to �x�i;1[q�1 ]; obtained

from replacing condition (39) into the equilibrium x�i;1[q1] in Proposition 5:

Proof. Given quasi-concavity of pro�t functions, the equilibrium q�1 is
given by the FOCs of problem (2), with 
j including the information con-
tained in system (22) and condition (24), i.e.

j;1 =

�
p�i;1

�
E�i;1[q1]

�
; p�j;1

�
E�i;1[q1]

�
;E�i;1[q1];B

�
i;2;
2

	
:

Lemma 5 illustrates two points. First, with respect to the optimal sav-
ing rule, it shows that in the presence of upstream-downstream strategic
interaction, the optimal q2 chosen by agent j is a¤ected by his rival�s de-
cision in relation to Bi;2: This is the case since such saving decisions will
a¤ect the way �rms interact strategically in the output market (trough the
in�uence that the use of permits has both on output prices and quantities).
The dominant-fringe setting takes into account how changes in �rm j0s de-
cisions a¤ect saving decisions of �rm i, and consequently, the choice of Ei;2
(either directly, or trough Bi;2). Instead, in our approach, both strategic
agents�decisions interplay.
Second, in relation to the optimal pricing behavior in the permits mar-

ket, lemma 5 shows that it is not a static decision. Firm j knows that the
price at period t = 1 will in�uence the saving decisions of �rm i in that
same period and, for that reason, it will in�uence the market outcomes (of
both �rms) in next period. Therefore, �rm j0 s optimal choice in period 1
must be such that the current marginal pro�tability of a change in permits�
price (considering both the permits and the output markets) is perfectly
balanced by the future marginal pro�tability of that change in permits
price, which is induced by the e¤ect of q1 on Bi;2 and the subsequent ef-
fects (i) of Bi;2 on q2; (ii) of q2 and Bi;2 on Ei2 and Ej2; (iii) and of
Ei2 and Ej2 on the output market (trough upstream-downstream strategic
linkages). When strategic interaction in the output market is relevant, our
model shows that the dominant-fringe settings cannot be used to predict
the equilibrium path of permits price.
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4.2.3. Optimal path of permits price

Under perfect competition both in the output and in the permits mar-
ket, the equilibrium path for permits prices is:

q1 =
q2
1 + r

; (42)

which, given intra-temporal static optimization, is also the path that max-
imizes total welfare (or minimizes total abatement cost):

h01 = q1 =
q2
1 + r

=
h02
1 + r

: (43)

If we consider a dominant-fringe framework for the permits market
(without considering the output market5) as in Liski and Montero (2006),
the path of prices may be di¤erent from the perfectly competitive one de-
pending on the parameters �; �; S and R. For instance, Liski and Montero
(2006) focus on parameter values such that, when the dominant �rm is the
only one holding banks, it is the case that

q1 >
q2
1 + r

: (44)

This means that the �rm exerting market power manipulates permits prices
to accelerate the depletion of the fringe�s bank of permits.
Our model adds to this literature by pointing out that, in the presence

of strategic interaction in the output market, upstream-downstream tech-
nological linkages create a new determinant of �rm j0s choice with respect
to the optimal price of permits (which reduced form is implicitly given by
the system of equations formed by both conditions in the previous lemma).
Then, we can conclude that:

Proposition 6. The optimal price in the �rst period is chosen taking
into account intra and inter-temporal strategic linkages between upstream
and downstream markets in the second period. The price-maker takes into
account the fact that this period�s price in�uences directly or trough his
rival�s reaction, outcomes in present and future output prices, and therefore,
markups and pro�ts.

5. WELFARE IMPLICATIONS

Using horizontal di¤erentiation à la Hotelling, we represent the spec-
trum of possible versions of the good produced in this economy by the unit
line [0; 1]: Moreover, we assume that �rms are located at opposite extremes

5This market structure is equivalent to consider a perfectly competitive output mar-
ket together with a dominant-fringe interaction in the permits market.
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of the unit line: �rm i is located at the extreme 0 and �rm j at the extreme
1: There is a unit mass of atomic consumers uniformly distributed on the
unit line according to their ideal speci�cation of the good. The position of
each consumer in the unit line is x 2 [0; 1] and we consider that consumers
face quadratic transport costs à la d�Aspremont et al. (1979).
Thus, the utility of consuming good i is given by:

U (V; x; pi) = V � �x2 � pi; (45)

where: V is the utility of consuming the ideal speci�cation of the good,
x 2 [0; 1] denotes the position of consumer x in the spectrum of possible
variants, � is the unit transportation cost and pi is the price charged by
�rm o¤ering good i: Similarly, the utility of consuming good j is given by:

U (V; x; pj) = V � � (1� x)2 � pj : (46)

De�ne the indi¤erent consumer located at ~x as the consumer for which the
following relations are satis�ed:

U (V; ~x; pi) = U (V; ~x; pj) (47)

V � � ~x2 � pi = V � � (1� ~x)2 � pj

~x =
1

2
� pi
2�
+
pj
2�
: (48)

Consumers located to the left of ~x buy good i while those located to
the right of ~x buy good j instead. Accordingly, demand functions are given
by:

yi [pi; pj ] =
1

2
� pi
2�
+
pj
2�
; (49)

yj [pi; pj ] =
1

2
+
pi
2�
� pj
2�
: (50)

Let us leave the possibility of banking aside for a moment and consider
the case of t = 2 where �rms maximize static pro�ts. Let us also assume
that R = 0:We can substitute the general demand functions in the previous
model by the ones speci�ed in (49) and (50) to obtain output prices as a
function of the parameters, i.e. p�i (�; S) ; and p

�
j (�; S). Accordingly, it is

possible to measure social welfare conditional on the regulator�s choice in
terms of S and �:
Social welfare in a period t can be obtained by aggregating consumers�

individual utility and adding total pro�ts, i.e.:

W � (�; S) = �� (�; S) + C� (�; S) (51)

whereW � (�; S) is the social welfare in equilibrium6 , �� (�; S) is the �rms�
joint-pro�ts in equilibrium, and C� (�; S) is the consumers� welfare in

6We consider social welfare in equilibrium in the sense that, conditional on regulator�s
decisions, both �rms and consumers are maximizing their respective payo¤s.
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equilibrium: Formally:

�� (�; S) = ��i (�; S) + �
�
j (�; S) ; (52)

where ��k (�; S) ; k = i; j; is the pro�ts of �rm k evaluated at the equilibrium
values of q�; E�k and p

�
k that solve our three-stage game for period t.

Similarly, consumers�welfare is given by:

C� (�; S) =

Z x(p�i (�;S);p
�
j (�;S))

0

�
V � �x2 � p�i (�; S)

�
dx (53)

+

Z 1

x(p�i (�;S);p�j (�;S))

�
V � � (1� x)2 � p�j (�; S)

�
dx;

where the �rst integral provides an aggregate measure of the welfare of
consumers that buy good i and the second integral provides an aggregate
measure of the welfare of consumers that buy good j:
Thus, total welfare in equilibrium, as a function of regulator�s choices,

is given by:

W � (�; S) = ��i (�; S) + �
�
j (�; S)

+
R x(p�i (�;S);p�j (�;S))
0

�
V � �x2 � p�i (�; S)

�
dx

+
R 1
x(p�i (�;S);p�j (�;S))

�
V � � (1� x)2 � p�j (�; S)

�
dx

(54)

For a given polluting target (S), it is possible to identify which alloca-
tion rule maximizes social welfare (considering that both consumers and
�rms behave rationally). For a given S; the optimal allocation rule (��) is
the solution to the following optimization problem:

max
�
fW � (�; S)g (55)

s:t: 0 � � � 1

From (55) we see that, in the presence of strategic interaction in the
output market, the optimal allocation rule � may coincide with the one
that ensures

h0i = h
0

j (56)

only by chance.
The allocation that ensures the relationship in (56) is the allocation

that entails maximization of social welfare in the absence of strategic be-
havior. This is the case given the duality between the welfare maximization
problem and the abatement cost minimization problem. When we observe
market power in the output market, such duality is no longer present: �rms
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decisions in the permits market (permits trading and abatement) will be re-
�ected in the output equilibrium prices (and therefore consumer�s welfare)
and vice versa.
Accordingly, when maximizing social welfare, under certain circum-

stances, the regulator could be willing to give up on abatement e¢ ciency
in order to lower prices of output and increase consumers�welfare (which
should more than compensate welfare losses due to ine¢ ciency in abate-
ment).
In what follows we maximize welfare for a certain period t, under strate-

gic interaction in the output market using speci�c functional forms. On
the side of consumers, we consider utility functions (45) and (46), normal-
izing transport costs to one, i.e. � = 1: In this case, demand faced by �rm
k = i; j is given by:

yk (pi; pj) =
1

2
� pk
2
+
p�k
2
: (57)

Moreover, we assume production and abatement costs satisfy:

ck(yk) =
1

2
y2k; k = i; j: (58)

hi(ai) =
1

2
a2i (59)

hj(aj) =
'

2
a2j ; ' < 1 (60)

where ' implies that �rm j owns a more e¢ cient abatement technology.
Considering these speci�c functions we solve the three-stage game pro-

posed in Section 2 for t = 2 with R = 0 (see Appendix D). Considering
reasonable values for the parameters, we get the allocation of permits that
maximizes joint pro�ts:

�� = 0:42: (61)

The allocation of permits that maximizes joint pro�ts for the chosen
value of the parameters is lower than a half, i.e. �� < 1

2 ; implying that the
less e¢ cient �rm in terms of abatement should receive less permits than
the most e¢ cient one. This result, contrary to previous literature�s result,
is due to strategic interaction in the output market. As underlined before,
in this setting the regulator considers both the pro�ts in the permits and
in the output market. Even if abatement costs are not minimized, the
higher pro�t in the output market compensates this ine¢ ciency. This is
the reason why �� < 1

2 :
After calculating consumer�s surplus as shown in Appendix D, the al-

location that maximizes total welfare is:

�� = 0:75: (62)
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For comparison purposes we compute, for same value of the parameters,
the allocation of permits that would lead to abatement e¢ ciency in a per-
fectly competitive framework, i.e., the allocation that ensures h0i = h

0
j and

that, in such a framework, leads to no trade (xi = 0) : Then, considering
the relation between prices and permits allocations we get:

�a = 0:53: (63)

Comparing our optimal allocation rule (62) with (61) and (63) we observe
that:

�� = 0:75 > �a = 0:53 > �� = 0:42 (64)

From (64) we learn that, under strategic interaction both in the out-
put and the permits market, in order to choose the optimal allocation of
permits, the regulator should not just focus on abatement e¢ ciency. For
the chosen values of the parameters, we �nd that the allocation that max-
imizes joint pro�ts, ��; is lower than the allocation that only considers
abatement e¢ ciency, �a since, while in the former case the regulator must
balance pro�ts both in permits and in output market7 , in the latter he only
looks at the permits market.
When the regulator does not only consider �rms�joint pro�ts but also

consumers�surplus, the optimal allocation of permits changes to ��. For
the chosen value of the parameters, the latter allocation is the highest.
This is because consumers would prefer the regulator to give all permits
to the less e¢ cient �rm to decrease output�s price. Then, maximization of
joint pro�ts both in the permits and in the output market counterbalance
the extreme position of consumers resulting in the value �� = 0:74515:
We now look at optimal allocation of permits considering the maxi-

mization of welfare across time in our two-period model (R > 0). Doing
this implies �nding the optimal initial extra allocation of permits � that
maximizes:

max
�

�
C1(�

�; �) + �1(�
�; �) +

C2(�
�; �) + �2(�

�; �)

1 + r

�
(65)

s:t: 0 � � � 1

In period 3, after bank is exhausted, the static game repeats itself.
Therefore, optimal � in the previous problem is conditional on the value of
� that maximizes welfare for a given t with R = 0. This is the reason why
in (65) we have already included the optimal allocation rule found in the
static case �� = 0:74515: For shortness we will not derive the value of � for
the chosen value of the parameters but we summarize the procedure in the

7The relation �a > �� is due to the fact that, for the chosen values of the parameters,
pro�ts in the output market from the �rm that recieves ��S is positive and therefore
higher than in the case where agents just interact in the permits market. In this last
case optimal allocation is �a:
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following three steps: (i) substitute expressions (57)-(60) in the FOCs of
our dynamic model and solve the system; (ii) given optimal behavior �nd �
that maximizes inter-temporal pro�ts; (iii) add consumer�s inter-temporal
surplus that, since price decisions are of a static nature, will simply be the
discounted sum of the consumer surplus as derived for the static case, i.e.
C1(�

�) + C2(�
�)

1+r :

6. CONCLUSION

In this paper, we use a game-theoretical model to account for two
strategic �rms interacting both in the permits and in the output mar-
ket. In terms of intra-temporal strategic interaction, �rst, we show that
�rms pass-through the costs of pollution abatement to consumers and are
able to realize windfall pro�ts. Second, di¤erently from previous literature,
we �nd that a price-taker in the permits market can counterbalance the
price-maker�s market power trough his actions in the output market. In
this context, we show that the price ine¢ ciency in the permits market,
which typically characterizes a dominant-fringe setting, disappears under
some output market conditions.
Regarding inter-temporal optimization, our main result is that the pos-

sibility of banking permits reinforces the price-taker�s possibility of counter-
balance the price-maker�s market power in the permits market. Nonethe-
less, the fact that the price-taking �rm holds positive stocks does not ensure
that the price path of permits coincides with the competitive one.
Our results are of big relevance for market design. Since permits mar-

ket outcomes and e¢ ciency depend on output market characteristics, au-
thorities should not ignore such interdependence when choosing optimal
regulatory policy. Further proof is provided in a numerical example where
we derive the optimal �ow allocation of permits and the rule for allocating
the initial bank of permits optimally.
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Appendix A
Let us consider that �rms compete à la Hotelling in the output market

which implies

yk;t[pi;t; pj;t] =
1

2
(1� pk;t + p�k;t) ; k = i; j (66)

Moreover, let us assume production and abatement costs are of the
form:

ck;t [yk;t] =
1

2
y2k;t; (67)

hi;t[ai;t] =
1

2
a2i;t; (68)

hj;t [aj;t] =
'

2
a2j;t; (69)

where, if ' < 1 implies that �rm j is the owner of the most e¢ cient
abatement technology.
To determine the impact of Ei;t in the equilibrium prices p�i;t and p

�
j;t we

substitute (66)-(68) in the general problem, solve the system of equations
in (22), and then make the derivative of equilibrium values p�i;t and p

�
j;t

w.r.t. Ei;t: We obtain

dp�i;t
dEi;t

= �
3'� 5

�2 + �2'+ 8
(70)

which is negative as long as ' < 5
3 : This is always the case if the price-maker

is also the owner of the most e¢ cient abatement technology (' < 1).
Similarly, it is the case that

dp�j;t
dEi;t

= �
5'� 3

�2 + �2'+ 8
(71)

which is positive if and only if ' > 3
5 , i.e. asymmetry in �rms�abatement

cost functions is not too strong.

Appendix B
The inequality

@pi;t
@Ei;t

yi;t +
dyi;t
dEi;t

�i;t > 0 (72)

can be re-expressed as

@pi;t
@Ei;t

yi;t
pi;t

��
"yi;t;pj;t

@pj;t
@pi;t

pi;t
pj;t

@yi;t
yi;t

yi;t
@yi;t

� "yi;t;pi;t
�
�i;t + yi;t

pi;t
yi;t

�
> 0

(73)
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where "yi;t;pi;t = �@yi;t
@pi;t

pi;t
yi;t

> 0 and "yi;t;pj;t = @yi;t
@pj;t

pj;t
yi;t

> 0 and therefore,
after rearranging we �nd

@pi;t
@Ei;t

yi;t

�
1� 2"yi;t;pi;t

�i;t
pi;t

�
> 0: (74)

The previous sign is respected if either:
a) it is the case that @pi;t

@Ei;t
< 0 and 1 < 2"yi;t;pi;t

�i;t
pi;t
; or:

b) instead @pi;t
@Ei;t

> 0 and 1 > 2"yi;t;pi;t
�i;t
pi;t
:

On the other hand, from (23) we know that

�i;t
pi;t

=
1

"yi;t;pi;t
: (75)

Then, the sign is respected only when @pi;t
@Ei;t

< 0 and is reversed other-

wise. Then, when the permit�s price e¤ect is positive
�
@pi;t
@Ei;t

> 0
�
, permit�s

quantity e¤ect is negative
�
dyi;t
dEi;t

< 0
�
.

Appendix D
Output equilibrium prices for the mentioned functions are:

p�i =
(4�2�5�Ei+3�2'+�4'�3S�'+3�'Ei�S�3'+12)

�2+�2'+8

p�j =
(3�2�3�Ei+4�2'+�4'�5S�'+5�'Ei�S�3'+12)

�2+�2'+8

(76)

Given equilibrium prices as a function of demand/supply of permits, we
now solve the second-stage of the game �nding:

E�i = E
�
i [q; �; S; '] (77)

that satis�es

dEi
dq

= �
�
�2 + �2'+ 8

�2
�5�2'2 + 6�2'+ 11�2 + 64

: (78)

The previous expression is negative if the denominator is positive. This

is the case if and only if ' 2
i
1
5�

�
3� � 8

p
�2 + 5

�
; 15�

�
3� + 8

p
�2 + 5

�h
that, for feasible values of � includes8 all possible values of 0 < ' < 1:
Finally, we solve the �rst stage of the game taking into account (76) to

(78) �nding:
q� = q� [�; S; '; �] (79)

Considering reasonable values of the parameters, say: � = 0:8; S = 0:5
and ' = 0:75 the previous expression can be simpli�ed to:

q� = 0:28� 0:16� (80)

8For example for say � = 0:8; the interval is: ' 2 ]�4:149 7; 5:349 7[.
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The conditional use of permits is then given by:

E�i = 0:18�+ 0:13 (81)

and equilibrium prices in the output market are:

p�i = 1:64� 4:44� 10�2� (82)

p�j = 1:21� 10�2�+ 1:59 (83)

Thus, equilibrium pro�ts conditional on regulator decision about � are
respectively given by:

�i = 0:16�� 6:51� 10�2�2 + 0:60 (84)

�j = 3:99� 10�2�2 � 0:14�+ 0:73 (85)

with

d�i
d�

= 0:16� 0:13�; (86)

d�j
d�

= 0:08�� 0:14: (87)

The �rst expression is positive while the second one is negative for any
feasible value of �:
Then, the allocation of permits between �rms that maximizes joint

pro�ts is:
�� = 0:42: (88)

Concerning consumers�welfare, given equilibrium output prices in (82),
the position of the indi¤erent consumer in the Hotelling interval is:

~x = 2:83� 10�2�+ 0:48 (89)

which is always inside the interval [0; 1] for relevant values of �:
Thus, consumers�total welfare is given by:

C (�) = 7:99� 10�4�2 + 1:50� 10�2�+ V � 1:70 (90)

and the economy�s total welfare W (�) is then

C (�) + � (�) = �2:44� 10�2�2 + 3:64� 10�2�+ V � 0:37: (91)

Then, the value of � that maximizes total welfare in (91) is:

�� = 0:75: (92)
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