Menu Content/Inhalt
Seminars Print
previous year previous month next month next year
See by year See by month See by week See Today Search Jump to month
Yoav Zemel, Goettingen University Print
Thursday, 04 April 2019, 12:15 - 13:15

Yoav Zemel, Göttingen University

Procrustes Metrics on Covariance Operators and Optimal Transportation of Gaussian Processes

Abstract : Covariance operators are fundamental in functional data analysis, providing the canonical means to analyse functional variation via the celebrated Karhunen-Loève expansion. These operators may themselves be subject to variation, for instance in contexts where multiple functional populations are to be compared. Statistical techniques to analyse such variation are intimately linked with the choice of metric on covariance operators, and the intrinsic infinite-dimensionality of these operators. We describe the manifold-like geometry of the space of trace-class infinite-dimensional covariance operators and associated key statistical properties, under the recently proposed infinite-dimensional version of the Procrustes metric (Pigoli et al. Biometrika 101, 409–422, 2014). We identify this space with that of centred Gaussian processes equipped with the Wasserstein metric of optimal transportation. The identification allows us to provide a detailed description of those aspects of this manifold-like geometry that are important in terms of statistical inference; to establish key properties of the Fréchet mean of a random sample of covariances; and to define generative models that are canonical for such metrics and link with the problem of registration of warped functional data.


Location: R42.2.113
Contact: Nancy De Munck - This e-mail address is being protected from spam bots, you need JavaScript enabled to view it